Zürcher Nachrichten - Chip Neuralink nel Cervello

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147

Chip Neuralink nel Cervello




Neuralink sta sviluppando una interfaccia cervello‑computer (BCI) totalmente impiantabile pensata per ristabilire l’autonomia di persone colpite da paralisi. Il cuore del sistema è l’impianto N1, un dispositivo di dimensioni paragonabili a una moneta che sostituisce una porzione di osso del cranio. All’interno contiene un chip custom e una batteria ricaricabile senza fili. Dal perimetro del disco partono 64 fili flessibili più sottili di un capello, ciascuno con 1 024 elettrodi che registrano l’attività elettrica dei neuroni. La batteria e i circuiti sono sigillati ermeticamente; la ricarica avviene mediante un caricatore ad induzione posizionato esternamente.

Queste sonde ultrasottili vengono inserite nel cervello con il supporto del robot chirurgico R1. Il robot utilizza telecamere ad alta definizione e un sistema di tomografia a coerenza ottica per mappare i vasi sanguigni della corteccia e inserire i fili con precisione micrometrica, evitando di danneggiare i tessuti. Una volta posizionati nelle aree motorie della corteccia, gli elettrodi catturano i potenziali d’azione dei neuroni, li amplificano e li inviano al chip, dove vengono codificati in dati digitali. La trasmissione avviene in modalità wireless tramite Bluetooth a un computer o a uno smartphone.

Come funziona la decodifica del pensiero
L’interfaccia interpreta i pattern di attivazione associati al movimento. Quando una persona pensa di muovere un arto, neuroni specifici aumentano la frequenza di scarica; il software applica algoritmi di neural decoding per trasformare queste fluttuazioni elettriche in comandi digitali. In questo modo l’utente può muovere un cursore, cliccare, digitare testo o controllare dispositivi domestici usando soltanto l’intenzione. La stessa tecnologia può, in teoria, restituire la sensibilità o stimolare il cervello attraverso feedback elettrici, creando un canale bidirezionale tra mente e macchina.

La sperimentazione clinica e i primi risultati
La prima sperimentazione su esseri umani è iniziata nel gennaio 2024, quando un uomo quadriplegico ha ricevuto l’impianto N1 nella corteccia motoria. Dopo l’intervento ha potuto controllare un cursore al solo pensiero e successivamente ha iniziato a giocare a scacchi e a videogiochi, navigare in rete e seguire corsi online. Nei mesi successivi un secondo volontario con lesione spinale e un terzo paziente affetto da sclerosi laterale amiotrofica (SLA) hanno ricevuto l’impianto. Quest’ultimo, che prima comunicava solo con il tracciamento oculare, ora riesce a scrivere e a parlare con maggiore fluidità grazie alla BCI. Insieme, i partecipanti hanno accumulato migliaia di ore di utilizzo indipendente, arrivando a trascorrere oltre sei ore al giorno collegati al sistema, segnando un progresso rispetto alle prime sessioni assistite.

Entro settembre 2025, Neuralink aveva comunicato che dodici persone con paralisi grave avevano ricevuto l’impianto e lo utilizzavano per controllare strumenti digitali e fisici. Il dispositivo ha evidenziato alcuni problemi tecnici: in un caso, alcuni fili si sono ritirati dal tessuto cerebrale, riducendo il numero di elettrodi attivi e richiedendo aggiornamenti software. Tuttavia gli ingegneri sono riusciti a compensare queste perdite attraverso algoritmi di calibrazione.

Verso la produzione di massa
A fine 2025 Elon Musk ha annunciato l’intenzione di avviare una produzione su larga scala dei dispositivi entro il 2026, affiancata da una procedura chirurgica quasi totalmente automatizzata. La società sta lavorando a una tecnica che consente ai fili di attraversare la dura madre senza rimuoverla, riducendo i tempi operatori e i rischi di infezione. Nei piani aziendali lo stesso robot R1 evolverà per impiantare dispositivi in serie con minore intervento umano.

Nel giugno 2025 Neuralink ha raccolto 650 milioni di dollari in un round di finanziamento, destinati ad ampliare l’accesso al chip e a sostenere le sperimentazioni. Oltre all’impianto N1 per il controllo motorio, l’azienda sta sviluppando progetti per ripristinare la vista attraverso una matrice di microelettrodi nella corteccia visiva, e per trattare disturbi psichiatrici come depressione e ansia con stimolazioni mirate.

Concorrenti e contesto di mercato
Neuralink non è l’unica azienda ad operare nel campo delle BCI. Società come Synchron, Blackrock Neurotech e Paradromics stanno sperimentando dispositivi alternativi. Synchron utilizza un dispositivo endovascolare che viene introdotto dalla vena giugulare e posizionato nei vasi sanguigni del cervello; trasmette i segnali a un ricevitore nel torace e permette ai pazienti di digitare e controllare dispositivi con pensiero. Blackrock Neurotech lavora su matrici intracorticali testate da oltre un decennio, mentre Paradromics sviluppa microaghi per decodificare segnali nella corteccia temporale. La concorrenza stimola innovazione ma evidenzia anche i diversi approcci tra impianti invasivi e soluzioni meno invasive.

Opportunità e rischi etici
Le potenzialità delle interfacce cervello‑computer sono enormi: potrebbero restaurare funzioni motorie, consentire la comunicazione a chi ha perso la voce e persino migliorare la memoria e l’apprendimento. Tuttavia i rischi non sono trascurabili. L’impianto richiede un intervento chirurgico con possibilità di infezioni o danni ai tessuti; la durata delle sonde e dell’elettronica nel tempo è ancora incerta. Inoltre, poiché il sistema registra segnali neurali ad alta definizione, sorgono preoccupazioni per la privacy: chi possiede i dati neurali e come verranno utilizzati? Ricercatori e bioeticisti sottolineano che l’accesso ai pensieri e alle intenzioni potrebbe esporre informazioni intime e rendere necessarie normative rigorose.

Un’ulteriore area di discussione riguarda la disuguaglianza nell’accesso: dispositivi costosi potrebbero essere disponibili solo per una ristretta élite, accentuando il divario tra chi può permettersi tecnologie avanzate e chi no. Infine, le dichiarazioni futuristiche di Musk su una futura simbiosi uomo‑intelligenza artificiale alimentano timori di transumanesimo e di un’erosione dell’identità umana, per quanto l’uso attuale del sistema sia focalizzato su applicazioni mediche.

Prospettive future
Neuralink promette di cambiare radicalmente l’approccio alla riabilitazione neurologica. I primi risultati dimostrano che i chip possono restituire autonomia a persone con paralisi, anche se permangono sfide tecniche e normative. Il passaggio alla produzione di massa nel 2026 e l’automazione dell’impianto potrebbero ridurre costi e rischi, rendendo la tecnologia più accessibile. Parallelamente, lo sviluppo di nuovi modelli per ripristinare la vista o trattare disturbi psichiatrici amplia il campo delle applicazioni.

Il successo di Neuralink dipenderà dalla sicurezza a lungo termine, dall’affidabilità del sistema, dalla protezione dei dati neurali e dalla capacità di rispondere alle preoccupazioni etiche. Se questi aspetti saranno gestiti con trasparenza e rigore scientifico, le interfacce cervello‑computer potrebbero inaugurare una nuova era di integrazione tra cervello e tecnologia, con benefici tangibili per milioni di persone.