Zürcher Nachrichten - Warming Baltic Sea: a red flag for global oceans

EUR -
AED 4.301343
AFN 77.611852
ALL 96.514738
AMD 446.868239
ANG 2.096972
AOA 1074.017289
ARS 1697.403887
AUD 1.766826
AWG 2.11114
AZN 1.995739
BAM 1.956099
BBD 2.35916
BDT 143.251875
BGN 1.956777
BHD 0.442668
BIF 3463.32887
BMD 1.171229
BND 1.514231
BOB 8.094236
BRL 6.490135
BSD 1.171279
BTN 104.951027
BWP 16.475516
BYN 3.442526
BYR 22956.085522
BZD 2.35576
CAD 1.615886
CDF 2996.593612
CHF 0.937635
CLF 0.027188
CLP 1066.568306
CNY 8.246564
CNH 8.23796
COP 4521.190411
CRC 584.989331
CUC 1.171229
CUP 31.037565
CVE 110.281841
CZK 24.338023
DJF 208.581852
DKK 7.472562
DOP 73.371204
DZD 152.341263
EGP 55.872532
ERN 17.568433
ETB 181.965387
FJD 2.67474
FKP 0.875628
GBP 0.880988
GEL 3.144796
GGP 0.875628
GHS 13.453054
GIP 0.875628
GMD 85.500123
GNF 10238.563486
GTQ 8.975371
GYD 245.057422
HKD 9.113976
HNL 30.857712
HRK 7.53616
HTG 153.573452
HUF 386.728509
IDR 19556.008162
ILS 3.75619
IMP 0.875628
INR 104.915577
IQD 1534.434317
IRR 49308.735131
ISK 147.141933
JEP 0.875628
JMD 187.41862
JOD 0.830448
JPY 184.757257
KES 150.983056
KGS 102.424413
KHR 4700.717826
KMF 491.916529
KPW 1054.119659
KRW 1728.453141
KWD 0.359837
KYD 0.976149
KZT 606.152563
LAK 25368.873969
LBP 104891.417505
LKR 362.65538
LRD 207.321659
LSL 19.649501
LTL 3.458335
LVL 0.708465
LYD 6.34897
MAD 10.73654
MDL 19.830028
MGA 5326.813434
MKD 61.5594
MMK 2459.639723
MNT 4161.636701
MOP 9.388034
MRU 46.876158
MUR 54.052655
MVR 18.095929
MWK 2031.110162
MXN 21.121987
MYR 4.775145
MZN 74.845892
NAD 19.649501
NGN 1710.181964
NIO 43.106583
NOK 11.874743
NPR 167.921643
NZD 1.99613
OMR 0.451419
PAB 1.171279
PEN 3.944502
PGK 4.982761
PHP 68.60009
PKR 328.173614
PLN 4.207347
PYG 7858.199991
QAR 4.270252
RON 5.07775
RSD 117.397927
RUB 94.264395
RWF 1705.460433
SAR 4.392871
SBD 9.541707
SCR 17.757712
SDG 704.49846
SEK 10.855305
SGD 1.514755
SHP 0.878725
SLE 28.168488
SLL 24560.087729
SOS 668.202038
SRD 45.023799
STD 24242.072559
STN 24.503742
SVC 10.248565
SYP 12952.131237
SZL 19.647
THB 36.805911
TJS 10.793648
TMT 4.099301
TND 3.428524
TOP 2.820038
TRY 50.065939
TTD 7.950214
TWD 36.91585
TZS 2922.446274
UAH 49.525863
UGX 4189.639781
USD 1.171229
UYU 45.987022
UZS 14081.15027
VES 330.473524
VND 30817.959199
VUV 141.64718
WST 3.265178
XAF 656.057184
XAG 0.017437
XAU 0.00027
XCD 3.165305
XCG 2.111022
XDR 0.815925
XOF 656.057184
XPF 119.331742
YER 279.225162
ZAR 19.652061
ZMK 10542.469351
ZMW 26.501047
ZWL 377.135213
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.0000

    80.22

    0%

  • CMSC

    -0.1200

    23.17

    -0.52%

  • CMSD

    -0.0300

    23.25

    -0.13%

  • JRI

    -0.0500

    13.38

    -0.37%

  • BCC

    -2.9300

    74.77

    -3.92%

  • NGG

    -0.2800

    76.11

    -0.37%

  • RYCEF

    0.2800

    15.68

    +1.79%

  • RIO

    0.6900

    78.32

    +0.88%

  • BCE

    -0.0100

    22.84

    -0.04%

  • VOD

    0.0400

    12.84

    +0.31%

  • RELX

    0.0800

    40.73

    +0.2%

  • GSK

    0.3200

    48.61

    +0.66%

  • AZN

    0.7500

    91.36

    +0.82%

  • BTI

    -0.5900

    56.45

    -1.05%

  • BP

    0.6300

    33.94

    +1.86%

Warming Baltic Sea: a red flag for global oceans
Warming Baltic Sea: a red flag for global oceans / Photo: Alessandro RAMPAZZO - AFP

Warming Baltic Sea: a red flag for global oceans

Climate change combined with pollution from farming and forestry could flip northern Europe's Baltic Sea from being a sponge for CO2 to a source of the planet-warming gas, scientists studying told AFP.

Text size:

This should be a red flag, they warned, noting that other coastal marine zones around the world are trending in the same direction.

"We are at the forefront of these changes," said University of Helsinki professor Alf Norkko.

The Baltic Sea –- connected to the Atlantic by the straights of Denmark, and surrounded by Germany, Poland, Finland, Sweden and the Baltic states –- has warmed at twice the pace of global oceans generally.

Its relatively shallow waters are extremely sensitive to changes in the environment and climate.

AFP recently accompanied Norkko, who leads the largest marine research station in the Baltic Sea, and some of his colleagues on a research excursion to the Finnish waterfront town of Hanko.

Slender terns dart above the lush marsh-like landscape surrounding the over 120-year-old field station, a common sight along Finland's 1,100-kilometre (680-mile) coastline, which is dotted by more than 81,000 islands.

Measurements conducted since 1926 show that average sea temperature have spiked by two degrees Celsius over the last 30 years.

"The Baltic Sea is basically a small bathtub compared to the global oceans," said doctoral researcher Norman Gobeler, an expert on marine heatwaves.

"We are seeing the first effects of the temperature increase."

- Linking marine ecosystems to climate change -

During one foray into the field, coastal ecologist and doctoral researcher Margaret Williamson –- sporting waist-high waders and sunglasses –- moved through a swaying, green reedbed collecting stems, roots and soil to measure CO2 levels.

"The Baltic Sea is really important for understanding what climate change is doing worldwide," said Williamson, who is part of a joint research project with Helsinki and Stockholm universities.

Many coastal areas across the globe -- coral reefs, estuaries, and mangrove forests –- are among the planet's richest biodiversity hotspots, providing vital nurseries and habitats for hundreds of marine species.

They are also the most vulnerable to the kind of changes observed in the Baltic.

Up to now, oceans have been our most important natural ally in coping with global warming.

Over decades, they have consistently absorbed 90 percent of the heat generated by human-induced climate change, and about a quarter of the carbon dioxide humanity injects into the atmosphere.

But scientists say there is a lot we do not know about the capacity of oceans to continue serving as "sinks", or sponges, for our carbon pollution, Norkko noted.

"There has been a lot of emphasis on terrestrial forests' role as carbon sinks," he said. "Our coasts and oceans have been ignored. The question is, how much further the oceans can take of all these stressors?"

- From carbon sink to carbon source? -

Recent findings from the Finnish research station suggest coastal ecosystems in the Baltic Sea could start emitting greenhouse gases –- CO2 and methane –- instead of absorbing them, driven by both rising temperatures and environmental pollution.

The ecological condition of many coastal areas has deteriorated due to the runoff from forestry and nitrogen and phosphorus-rich fertiliser used in agriculture, as well as untreated waste water.

The overabundance of chemical nutrients leads to harmful algae blooms, and vast "dead zones" depleted of oxygen, a process known as eutrophication.

"A degraded ecosystem will be a net carbon source," Norkko said. "Our biggest concern is that what should be an efficient carbon sink could become a carbon source."

Norkko said the changes already witnessed in the Baltic Sea should sound the alarm for coastal regions across the world.

"Many of the world's densely populated coastal areas are affected by eutrophication and this has a huge effect on the ability of coastal ecosystems to mitigate climate change," he said.

While measures to protect and restore healthy marine ecosystems had been taken in the Baltic Sea and elsewhere, ramped up efforts are required to ensure their role as carbon absorbers.

Pointing to the dark green, bubbly bladderwrack -- a threatened seaweed that anchors coastal marine ecosystems –- Norkko compared the algae with an "old growth forest", noting it lives up to 30 years in a robust coastal ecosystem.

"Once the bladderwrack sucks up carbon it stores it for a long time," he said. "That's why a healthy system is a buffer against change and is important to maintain."

H.Roth--NZN