Zürcher Nachrichten - 'Mind-blowing': Astronomers spot most distant radio burst yet

EUR -
AED 4.33804
AFN 76.779267
ALL 96.374356
AMD 447.71893
ANG 2.114485
AOA 1083.182631
ARS 1712.435599
AUD 1.697929
AWG 2.129156
AZN 2.011163
BAM 1.949197
BBD 2.381632
BDT 144.620112
BGN 1.983712
BHD 0.445341
BIF 3515.012221
BMD 1.181224
BND 1.502025
BOB 8.200568
BRL 6.212068
BSD 1.182494
BTN 108.134162
BWP 15.563937
BYN 3.38593
BYR 23151.984599
BZD 2.378154
CAD 1.613144
CDF 2675.471776
CHF 0.921278
CLF 0.025959
CLP 1025.018142
CNY 8.211572
CNH 8.199329
COP 4283.495142
CRC 586.717511
CUC 1.181224
CUP 31.302428
CVE 109.892748
CZK 24.309266
DJF 210.575606
DKK 7.470035
DOP 74.68921
DZD 153.350921
EGP 55.624997
ERN 17.718356
ETB 184.332392
FJD 2.632594
FKP 0.862003
GBP 0.865223
GEL 3.183433
GGP 0.862003
GHS 12.966078
GIP 0.862003
GMD 86.229201
GNF 10375.983988
GTQ 9.073265
GYD 247.402417
HKD 9.225398
HNL 31.214264
HRK 7.534907
HTG 154.976996
HUF 381.085803
IDR 19826.839872
ILS 3.660205
IMP 0.862003
INR 108.080773
IQD 1549.052714
IRR 49759.048718
ISK 144.994919
JEP 0.862003
JMD 185.663438
JOD 0.837461
JPY 183.725144
KES 152.531745
KGS 103.297792
KHR 4761.073794
KMF 490.207333
KPW 1063.101334
KRW 1718.00772
KWD 0.362955
KYD 0.985404
KZT 597.142286
LAK 25429.965772
LBP 105893.477113
LKR 366.184232
LRD 219.356234
LSL 18.93177
LTL 3.487847
LVL 0.714511
LYD 7.470788
MAD 10.783173
MDL 20.020031
MGA 5273.159935
MKD 61.663383
MMK 2480.553789
MNT 4210.619832
MOP 9.512677
MRU 46.954944
MUR 53.92267
MVR 18.261671
MWK 2050.363246
MXN 20.509776
MYR 4.656351
MZN 75.314989
NAD 18.93177
NGN 1646.685402
NIO 43.512605
NOK 11.46028
NPR 173.01539
NZD 1.96659
OMR 0.454064
PAB 1.182499
PEN 3.982709
PGK 5.066837
PHP 69.546314
PKR 331.003457
PLN 4.221091
PYG 7862.366893
QAR 4.322657
RON 5.095918
RSD 117.433734
RUB 90.421532
RWF 1728.744025
SAR 4.429696
SBD 9.510756
SCR 17.716387
SDG 710.496468
SEK 10.592606
SGD 1.50306
SHP 0.886224
SLE 28.733281
SLL 24769.669596
SOS 675.81645
SRD 44.91603
STD 24448.945792
STN 24.417288
SVC 10.347082
SYP 13063.832022
SZL 18.9229
THB 37.308921
TJS 11.044235
TMT 4.134283
TND 3.411544
TOP 2.844103
TRY 51.370125
TTD 8.005948
TWD 37.334917
TZS 3057.585555
UAH 50.925541
UGX 4223.692596
USD 1.181224
UYU 45.874604
UZS 14456.031409
VES 408.634194
VND 30735.440779
VUV 140.750731
WST 3.202039
XAF 653.770082
XAG 0.015034
XAU 0.000251
XCD 3.192316
XCG 2.131081
XDR 0.811755
XOF 653.742502
XPF 119.331742
YER 281.51517
ZAR 18.981261
ZMK 10632.429606
ZMW 23.206373
ZWL 380.353551
  • RYCEF

    0.7000

    16.7

    +4.19%

  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    0.1000

    82.5

    +0.12%

  • AZN

    0.3200

    190.76

    +0.17%

  • CMSC

    -0.0600

    23.69

    -0.25%

  • VOD

    0.1450

    14.795

    +0.98%

  • NGG

    -0.3500

    84.91

    -0.41%

  • GSK

    0.8100

    52.42

    +1.55%

  • BCC

    1.8450

    82.675

    +2.23%

  • RIO

    0.9300

    92.01

    +1.01%

  • BCE

    0.1100

    25.955

    +0.42%

  • CMSD

    -0.0100

    24.09

    -0.04%

  • JRI

    0.0380

    13.115

    +0.29%

  • RELX

    -0.1250

    35.68

    -0.35%

  • BTI

    -0.1100

    60.58

    -0.18%

  • BP

    -0.2200

    37.66

    -0.58%

'Mind-blowing': Astronomers spot most distant radio burst yet
'Mind-blowing': Astronomers spot most distant radio burst yet / Photo: Handout - NASA/AFP/File

'Mind-blowing': Astronomers spot most distant radio burst yet

Eight billion years ago, something happened in a distant galaxy that sent an incredibly powerful blast of radio waves hurtling through the universe.

Text size:

It finally arrived at Earth on June 10 last year and -- though it lasted less than a thousandth of a second -- a radio telescope in Australia managed to pick up the signal.

This flash from the cosmos was a fast radio burst (FRB), a little-understood phenomenon first discovered in 2007.

Astronomers revealed on Thursday that this particular FRB was more powerful and came from much farther away than any previously recorded, having travelled eight billion light years from when the universe was less than half its current age.

Exactly what causes FRBs has become one of astronomy's great mysteries. There was early speculation that they could be radio communication beamed from some kind of extraterrestrial, particularly because some of the signals repeat.

However scientists believe the prime suspects are distant dead stars called magnetars, which are the most magnetic objects in the universe.

Ryan Shannon, an astrophysicist at Australia's Swinburne University, told AFP it was "mind-blowing" that the ASKAP radio telescope in Western Australia had spotted the radio burst last year.

- 'Lucky' -

"We were lucky to be looking at that little spot in the sky for that one millisecond after the eight billion years the pulse had travelled to catch it," said Shannon, co-author of a study describing the find in the journal Science.

The FRB easily beat the previous record holder, which was from around five billion light years away, he added.

The pulse was so powerful that -- in under a millisecond -- it released as much energy as the Sun emits over 30 years.

Shannon said that there could be hundreds of thousands of FRBs flashing in the sky every day.

But around a thousand have been detected so far, and scientists have only been able to work out where just 50 came from -- which is crucial to understanding them.

To find out where the latest radio burst -- dubbed FRB 20220610A -- came from, the researchers turned to the Very Large Telescope in Chile.

It found that the signal originated from a particularly clumpy galaxy that may have been merging with one or two other galaxies, which could in turn have created the bizarre magnetar.

Shannon emphasised that this was just the team's "best hunch".

FRBs have been detected coming from unexpected places, including from within our own Milky Way galaxy, so "the jury's still out" on what causes them, he said.

Aside from trying to uncover the secrets of FRBs, scientists hope to use them as a tool to shed light on another of the universe's mysteries.

- Where's the matter? -

Just five percent of the universe is made up of normal matter -- what everything you can see is made out of -- while the rest is thought to be composed of the little understood dark matter and dark energy.

But when astronomers count up all the stars and galaxies in the universe, more than half of that five percent of normal matter is "missing", Shannon said.

Scientists believe this missing matter is spread out in thin filaments connecting galaxies called the cosmic web, however it is so diffuse current telescopes cannot see it.

That's where fast radio bursts come in.

They are "imprinted with the signature of all the gas they travel through", Shannon said.

Some FRB wavelengths are slightly slowed down when travelling through this matter, giving scientists a way to measure it.

This could allow them work out how much matter is in the cosmic web -- and therefore, the total weight of the universe.

For the record-breaking FRB, Shannon said the team had noticed signals of "extra materials" the burst had passed through on its journey through the universe.

But to use this information to get a proper measurement of the universe's weight, hundreds more FRBs will likely need to be observed, he added.

With much more advanced radio telescopes expected to go online soon, astronomers hope that will happen relatively quickly.

Liam Connor, an astrophysicist at the California Institute of Technology not involved in the research, told AFP that future radio telescopes will find tens of thousands of FRBs, allowing scientists to weigh all the matter "across cosmic epochs".

T.Furrer--NZN