Zürcher Nachrichten - Hubble telescope spots most distant star ever seen

EUR -
AED 4.278799
AFN 77.332466
ALL 96.575617
AMD 445.1876
ANG 2.085576
AOA 1068.388216
ARS 1684.735918
AUD 1.75613
AWG 2.09862
AZN 1.984015
BAM 1.955298
BBD 2.351906
BDT 142.873314
BGN 1.955951
BHD 0.439244
BIF 3450.13256
BMD 1.165091
BND 1.512264
BOB 8.068928
BRL 6.18139
BSD 1.167705
BTN 104.895516
BWP 15.51395
BYN 3.380546
BYR 22835.780461
BZD 2.348507
CAD 1.624445
CDF 2598.152383
CHF 0.935795
CLF 0.027249
CLP 1068.972737
CNY 8.239114
CNH 8.235468
COP 4423.838268
CRC 572.550529
CUC 1.165091
CUP 30.874907
CVE 110.236695
CZK 24.215228
DJF 207.947498
DKK 7.468599
DOP 74.200629
DZD 151.573688
EGP 55.422094
ERN 17.476363
ETB 182.080866
FJD 2.631882
FKP 0.872491
GBP 0.87341
GEL 3.139877
GGP 0.872491
GHS 13.301585
GIP 0.872491
GMD 85.051785
GNF 10146.786517
GTQ 8.944742
GYD 244.307269
HKD 9.07004
HNL 30.745973
HRK 7.537941
HTG 152.955977
HUF 381.927241
IDR 19422.821609
ILS 3.76036
IMP 0.872491
INR 104.791181
IQD 1529.71378
IRR 49079.451231
ISK 149.003201
JEP 0.872491
JMD 187.141145
JOD 0.82607
JPY 180.711448
KES 150.704566
KGS 101.886647
KHR 4676.939601
KMF 491.66861
KPW 1048.573823
KRW 1715.887947
KWD 0.35759
KYD 0.973154
KZT 590.220982
LAK 25331.604319
LBP 104570.198293
LKR 360.448994
LRD 206.107962
LSL 19.822595
LTL 3.44021
LVL 0.704752
LYD 6.347397
MAD 10.774234
MDL 19.862985
MGA 5193.64414
MKD 61.624177
MMK 2446.620372
MNT 4131.997126
MOP 9.362236
MRU 46.266921
MUR 53.675364
MVR 17.954132
MWK 2024.871384
MXN 21.185039
MYR 4.789718
MZN 74.447687
NAD 19.822595
NGN 1690.547045
NIO 42.970442
NOK 11.774198
NPR 167.831186
NZD 2.017279
OMR 0.448002
PAB 1.1678
PEN 3.926892
PGK 4.952877
PHP 68.813177
PKR 329.883811
PLN 4.230421
PYG 8097.955442
QAR 4.268104
RON 5.093784
RSD 117.405001
RUB 89.428762
RWF 1699.056442
SAR 4.372624
SBD 9.581501
SCR 15.83572
SDG 700.739077
SEK 10.962357
SGD 1.508886
SHP 0.87412
SLE 26.796781
SLL 24431.370198
SOS 666.226074
SRD 45.023191
STD 24115.028075
STN 24.494657
SVC 10.21742
SYP 12883.858981
SZL 19.816827
THB 37.09708
TJS 10.731491
TMT 4.077818
TND 3.427635
TOP 2.805259
TRY 49.532165
TTD 7.917001
TWD 36.455959
TZS 2842.8212
UAH 49.235746
UGX 4139.936989
USD 1.165091
UYU 45.74845
UZS 13910.428222
VES 289.625154
VND 30711.794538
VUV 142.222766
WST 3.250779
XAF 655.7858
XAG 0.020016
XAU 0.000276
XCD 3.148716
XCG 2.104569
XDR 0.815587
XOF 655.791427
XPF 119.331742
YER 277.75676
ZAR 19.715959
ZMK 10487.212054
ZMW 26.828226
ZWL 375.158775
  • RBGPF

    0.0000

    78.35

    0%

  • RYCEF

    0.4600

    14.67

    +3.14%

  • NGG

    -0.5800

    75.91

    -0.76%

  • RIO

    -0.5500

    73.73

    -0.75%

  • GSK

    -0.4000

    48.57

    -0.82%

  • SCS

    -0.1200

    16.23

    -0.74%

  • CMSC

    0.0400

    23.48

    +0.17%

  • RELX

    0.3500

    40.54

    +0.86%

  • CMSD

    -0.0300

    23.32

    -0.13%

  • BTI

    0.5300

    58.04

    +0.91%

  • BCC

    -2.3000

    74.26

    -3.1%

  • BP

    -0.0100

    37.23

    -0.03%

  • JRI

    0.0500

    13.75

    +0.36%

  • VOD

    0.0500

    12.64

    +0.4%

  • AZN

    -0.8200

    90.03

    -0.91%

  • BCE

    0.0400

    23.22

    +0.17%

Hubble telescope spots most distant star ever seen
Hubble telescope spots most distant star ever seen

Hubble telescope spots most distant star ever seen

The Hubble space telescope has peered back to the dawn of cosmic time and detected light from a star that existed within the first billion years after the Big Bang -- a new record, astronomers said Wednesday.

Text size:

The newly discovered star, called "Earendel," is so far away its light has taken 12.9 billion years to reach Earth, when the universe was seven percent its current age.

"We almost didn't believe it at first, it was so much farther than the previous most distant," said astronomer Brian Welch of Johns Hopkins University in Baltimore, lead author of a paper in Nature describing the discovery.

The previous record holder was detected in 2018 when the universe was four billion years old.

Because the universe is expanding, by the time light from distant stars reaches us it is stretched to longer, redder wavelengths, a phenomenon called "redshift."

Earendel's light came from an era called redshift 6.2.

"Normally at these distances, entire galaxies look like small smudges, the light from millions of stars blending together," said Welch in a statement.

The galaxy hosting the star has been naturally magnified and distorted by an effect called gravitational lensing.

This is when a massive object in between the observer and the thing they're looking at bends the fabric of space-time, so that rays of light coming from the target object that were diverging are bent back towards the observer.

The cosmic magnifying glass in this case is a huge galaxy cluster known as WHL0137-08, which, thanks to a rare alignment, provides maximum magnification and brightening.

"The galaxy hosting this star has been magnified and distorted by gravitational lensing into a long crescent that we named the Sunrise Arc," said Welch.

After he studied the galaxy in detail, Welch found that one feature is an extremely magnified star that he called Earendel, which means "morning star" in Old English.

Earendel existed so long ago that it may not have had the same raw materials as the stars that exist today, added Welch.

"It's like we've been reading a really interesting book, but we started with the second chapter, and now we will have a chance to see how it all got started," he said.

Astronomers intend to gaze at the star using the James Webb Space Telescope, Hubble's successor, which is highly sensitive to infrared light from the oldest celestial bodies, in order to confirm Earendel's age, mass and radius.

It has been hypothesized that primordial stars were made solely from the elements forged after the Big Bang: hydrogen, helium and trace amounts of lithium, and should be more massive than stars that exist today.

It remains to be seen if Earendel belongs to these so-called "Population III" stars, but while the probability is small, it is enticing, said Welch.

Webb, which should go online this summer, is expected to break Hubble's records and peer even further back in time.

P.Gashi--NZN