Zürcher Nachrichten - 'Mystery' boson finding contradicts understanding of universe

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • JRI

    0.1400

    13.08

    +1.07%

  • RELX

    -0.3700

    35.8

    -1.03%

  • BCC

    0.5100

    80.81

    +0.63%

  • RIO

    -4.1000

    91.03

    -4.5%

  • BCE

    0.3700

    25.86

    +1.43%

  • AZN

    0.1800

    92.77

    +0.19%

  • CMSC

    0.0500

    23.76

    +0.21%

  • BTI

    0.4600

    60.68

    +0.76%

  • VOD

    -0.0600

    14.65

    -0.41%

  • NGG

    0.2000

    85.27

    +0.23%

  • RYCEF

    -0.4300

    16

    -2.69%

  • BP

    -0.1600

    37.88

    -0.42%

  • GSK

    0.9400

    51.6

    +1.82%

'Mystery' boson finding contradicts understanding of universe
'Mystery' boson finding contradicts understanding of universe

'Mystery' boson finding contradicts understanding of universe

After a decade of meticulous measurements, scientists announced Thursday that a fundamental particle -- the W boson -- has a significantly greater mass than theorised, shaking the foundations of our understanding of how the universe works.

Text size:

Those foundations are grounded by the Standard Model of particle physics, which is the best theory scientists have to describe the most basic building blocks of the universe, and what forces govern them.

The W boson governs what is called the weak force, one of the four fundamental forces of nature, and therefore a pillar of the Standard Model.

However new research published in the Science journal said that the most precise measurement ever made of the W Boson directly contradicts the model's prediction.

Ashutosh Kotwal, a physicist at Duke University who led the study, told AFP that the result had taken more than 400 scientists over 10 years to scrutinise four million W boson candidates out of a "dataset of around 450 trillion collisions".

These collisions -- made by smashing particles together at mind-bending speeds to study them -- were done by the Tevatron collider in the US state of Illinois.

It was the world's highest-energy particle accelerator until 2009, when it was supplanted by the Large Hadron Collider near Geneva, which famously observed the Higgs boson a few years later.

The Tevatron stopped running in 2011, but the scientists at the Collider Detector at Fermilab (CDF) have been crunching numbers ever since.

- 'Fissures' in the model -

Harry Cliff, a particle physicist at Cambridge University who works at the Large Hadron Collider, said the Standard Model is "probably the most successful scientific theory that has ever been written down".

"It can make fantastically precise predictions," he said. But if those predictions are proved wrong, the model cannot merely be tweaked.

"It's like a house of cards, you pull on one bit of it too much, the whole thing comes crashing down," Cliff told AFP.

The standard model is not without its problems.

For example, it doesn't account for dark matter, which along with dark energy is thought to make up 95 percent of the universe. It also says that the universe should not have existed in the first place, because the Big Bang ought to have annihilated itself.

On top of that, "a few fissures have recently been exposed" in the model, physicists said in a companion Science article.

"In this framework of clues that there are missing pieces to the standard model, we have contributed one more, very interesting, and somewhat large clue," Kotwal said.

Jan Stark, physicist and director of research at the French CNRS institute, said "this is either a major discovery or a problem in the analysis of data," predicting "quite heated discussions in the years to come".

He told AFP that "extraordinary claims require extraordinary evidence".

- 'Huge deal' -

The CDF scientists said they had determined the W boson's mass with a precision of 0.01 percent -- twice as precise as previous efforts.

They compared it to measuring the weight of a 350-kilogram (800-pound) gorilla to within 40 grams (1.5 ounces).

They found the boson was different than the standard model's prediction by seven standard deviations, which are also called sigma.

Cliff said that if you were flipping a coin, "the chances of getting a five sigma result by dumb luck is one in three and a half million".

"If this is real, and not some systematic bias or misunderstanding of how to do the calculations, then it's a huge deal because it would mean there's a new fundamental ingredient to our universe that we haven't discovered before," he said.

"But if you're going to say something as big as we've broken the standard model of particle physics, and there's new particles out there to discover, to convince people of that you probably need more than one measurement from more than one experiment."

CDF co-spokesperson David Toback said that "it's now up to the theoretical physics community and other experiments to follow up on this and shed light on this mystery".

And after a decade of measurements, Kotwal isn't done yet.

"We follow the clues and leave no stone unturned, so we'll figure out what this means."

J.Hasler--NZN