Zürcher Nachrichten - Moth uses stars to navigate long distances, scientists discover

EUR -
AED 4.277424
AFN 76.282379
ALL 96.389901
AMD 444.278751
ANG 2.0846
AOA 1067.888653
ARS 1666.882107
AUD 1.752778
AWG 2.096182
AZN 1.984351
BAM 1.954928
BBD 2.344654
BDT 142.403852
BGN 1.956425
BHD 0.438198
BIF 3455.206503
BMD 1.164546
BND 1.508021
BOB 8.044377
BRL 6.334667
BSD 1.164081
BTN 104.66486
BWP 15.466034
BYN 3.346807
BYR 22825.091832
BZD 2.341246
CAD 1.610276
CDF 2599.265981
CHF 0.936525
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4463.819362
CRC 568.64633
CUC 1.164546
CUP 30.860456
CVE 110.752812
CZK 24.203336
DJF 206.963485
DKK 7.470448
DOP 74.822506
DZD 151.068444
EGP 55.295038
ERN 17.468183
ETB 180.679691
FJD 2.632397
FKP 0.872083
GBP 0.872973
GEL 3.138497
GGP 0.872083
GHS 13.3345
GIP 0.872083
GMD 85.012236
GNF 10116.993527
GTQ 8.917022
GYD 243.550308
HKD 9.065929
HNL 30.604708
HRK 7.535429
HTG 152.392019
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.872083
INR 104.760771
IQD 1525.554607
IRR 49041.926882
ISK 149.038983
JEP 0.872083
JMD 186.32688
JOD 0.825709
JPY 180.935883
KES 150.58016
KGS 101.839952
KHR 4664.005142
KMF 491.43861
KPW 1048.083022
KRW 1716.311573
KWD 0.357481
KYD 0.970163
KZT 588.714849
LAK 25258.992337
LBP 104285.050079
LKR 359.069821
LRD 206.012492
LSL 19.73949
LTL 3.438601
LVL 0.704422
LYD 6.347216
MAD 10.756329
MDL 19.807079
MGA 5225.31607
MKD 61.612515
MMK 2445.475195
MNT 4130.063083
MOP 9.335036
MRU 46.419225
MUR 53.689904
MVR 17.938355
MWK 2022.815938
MXN 21.164687
MYR 4.787492
MZN 74.426542
NAD 19.739485
NGN 1688.68458
NIO 42.826206
NOK 11.767853
NPR 167.464295
NZD 2.015483
OMR 0.446978
PAB 1.164176
PEN 4.096293
PGK 4.876539
PHP 68.66747
PKR 326.50949
PLN 4.229804
PYG 8006.428369
QAR 4.240169
RON 5.092096
RSD 117.610988
RUB 88.93302
RWF 1689.755523
SAR 4.37074
SBD 9.584899
SCR 15.748939
SDG 700.4784
SEK 10.946786
SGD 1.508557
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 665.542019
SRD 44.985272
STD 24103.740676
STN 24.921274
SVC 10.184839
SYP 12877.828498
SZL 19.739476
THB 37.119932
TJS 10.680789
TMT 4.087555
TND 3.436865
TOP 2.803946
TRY 49.523506
TTD 7.89148
TWD 36.437508
TZS 2835.668687
UAH 48.86364
UGX 4118.162907
USD 1.164546
UYU 45.529689
UZS 13980.369136
VES 296.437311
VND 30697.419423
VUV 142.156196
WST 3.249257
XAF 655.661697
XAG 0.019993
XAU 0.000278
XCD 3.147243
XCG 2.098055
XDR 0.815205
XOF 655.061029
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.913878
ZWL 374.983176
  • RBGPF

    0.0000

    78.35

    0%

  • JRI

    0.0400

    13.79

    +0.29%

  • BCC

    -1.2100

    73.05

    -1.66%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • SCS

    -0.0900

    16.14

    -0.56%

  • NGG

    -0.5000

    75.41

    -0.66%

  • RELX

    -0.2200

    40.32

    -0.55%

  • GSK

    -0.1600

    48.41

    -0.33%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • RIO

    -0.6700

    73.06

    -0.92%

  • VOD

    -0.1630

    12.47

    -1.31%

  • AZN

    0.1500

    90.18

    +0.17%

  • BCE

    0.3300

    23.55

    +1.4%

  • BTI

    -1.0300

    57.01

    -1.81%

  • BP

    -1.4000

    35.83

    -3.91%

Moth uses stars to navigate long distances, scientists discover
Moth uses stars to navigate long distances, scientists discover / Photo: Ajay Narendra - Macquarie University/AFP

Moth uses stars to navigate long distances, scientists discover

A species of Australian moth travels up to a thousand kilometres every summer using the stars to navigate, scientists said Wednesday, the first time this talent has been discovered in an invertebrate covering vast distances.

Text size:

When temperatures start rising every year, Bogong moths embark on the long night-time flight from their home on the country's eastern coast to the cool inland shelter of caves in the Australian Alps.

It has recently been discovered that they can use Earth's magnetic field like a compass to stay on track during their trip of up to 1,000 kilometres (620 miles).

Now, a study published in the journal Nature has found that the moths can also use the light from the stars and the Milky Way to find their way through the dark.

"This is the first invertebrate that's known to be able to use the stars for that purpose," study co-author Eric Warrant of Sweden's Lund University told AFP.

The only other invertebrate known to use stars for orientation are dung beetles -- but that is over very short distances, Warrant said.

Out of all the animal kingdom, only some birds, possibly seals and of course humans can use starlight to navigate long distance.

Bogong moths, which are around three centimetres long and are named after the Indigenous Australian word for brown, now join that list.

- 'Flight simulator' -

To study this phenomenon, the international team of researchers put some Bogong moths in a small enclosure and projected different maps of the night sky onto its ceiling.

The moth was tethered to a rod connected to the top of the enclosure, which precisely recorded which directions it tried to fly in.

This "flight simulator" first confirmed that Bogong moths can in fact navigate using their internal magnetic compass, lead study author David Dreyer, also of Lund University, told AFP.

Then the researchers removed the effect of Earth's magnetic field in the enclosure.

"To our surprise," the moths were still able to find the right direction, Dreyer said.

When they rotated the sky 180 degrees, the moths changed their flight to follow along.

And when the researchers projected weird, incorrect maps of the night sky, the moths became erratic and lost.

This reinforced that the insects can not only navigate by the sky, but can follow along during the night when the relative positions of the stars shift along with Earth's rotation.

- Mysteries abound -

No one knows exactly how the Bogong moth manages this feat.

One theory is that they sometimes "cross-check" their direction with their magnetic compass, Dreyer said.

Another question is exactly which stars the moths are using to navigate.

In the lab, the researchers monitored 30 neurons involved in the moth's vision, coordination and navigation.

Developing the system of non-magnetic electrodes "cost me a fortune but it was worth the investment," Warrant said.

The neurons became particularly active at the sight of the long, bright stripe of the Milky Way, as well as the Carina Nebula.

The Milky Way is brighter in the Southern Hemisphere than in the north, Warrant pointed out.

"The intensity of that stripe grows as you go from the northern part of the sky to the southern part," which could offer a clue as to how the moths use it to navigate south, Warrant said.

Another mystery is how the moths know when to head south when summer arrives.

Warrant, who is supervising further research on this subject, said one option is that this knowledge was simply "something that the parents hand to their children".

The researchers believe that near the end of the moth's long migration, they start noticing clues they are getting close to their mountain refuge.

Warrant said he has identified a specific "odour compound" which emanates from the caves.

This smell "seems to act as a navigational beacon right at the very end of the journey," he added.

After the moths have seen out the sweltering summer, they return to their coastal birthplace to reproduce before dying.

E.Leuenberger--NZN