Zürcher Nachrichten - Moth uses stars to navigate long distances, scientists discover

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • RBGPF

    1.3800

    83.78

    +1.65%

  • SCS

    0.0200

    16.14

    +0.12%

  • BCC

    0.5100

    80.81

    +0.63%

  • JRI

    0.1400

    13.08

    +1.07%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • BCE

    0.3700

    25.86

    +1.43%

  • RIO

    -4.1000

    91.03

    -4.5%

  • RYCEF

    -0.4300

    16

    -2.69%

  • RELX

    -0.3700

    35.8

    -1.03%

  • GSK

    0.9400

    51.6

    +1.82%

  • CMSC

    0.0500

    23.76

    +0.21%

  • VOD

    -0.0600

    14.65

    -0.41%

  • AZN

    0.1800

    92.77

    +0.19%

  • NGG

    0.2000

    85.27

    +0.23%

  • BTI

    0.4600

    60.68

    +0.76%

  • BP

    -0.1600

    37.88

    -0.42%

Moth uses stars to navigate long distances, scientists discover
Moth uses stars to navigate long distances, scientists discover / Photo: Ajay Narendra - Macquarie University/AFP

Moth uses stars to navigate long distances, scientists discover

A species of Australian moth travels up to a thousand kilometres every summer using the stars to navigate, scientists said Wednesday, the first time this talent has been discovered in an invertebrate covering vast distances.

Text size:

When temperatures start rising every year, Bogong moths embark on the long night-time flight from their home on the country's eastern coast to the cool inland shelter of caves in the Australian Alps.

It has recently been discovered that they can use Earth's magnetic field like a compass to stay on track during their trip of up to 1,000 kilometres (620 miles).

Now, a study published in the journal Nature has found that the moths can also use the light from the stars and the Milky Way to find their way through the dark.

"This is the first invertebrate that's known to be able to use the stars for that purpose," study co-author Eric Warrant of Sweden's Lund University told AFP.

The only other invertebrate known to use stars for orientation are dung beetles -- but that is over very short distances, Warrant said.

Out of all the animal kingdom, only some birds, possibly seals and of course humans can use starlight to navigate long distance.

Bogong moths, which are around three centimetres long and are named after the Indigenous Australian word for brown, now join that list.

- 'Flight simulator' -

To study this phenomenon, the international team of researchers put some Bogong moths in a small enclosure and projected different maps of the night sky onto its ceiling.

The moth was tethered to a rod connected to the top of the enclosure, which precisely recorded which directions it tried to fly in.

This "flight simulator" first confirmed that Bogong moths can in fact navigate using their internal magnetic compass, lead study author David Dreyer, also of Lund University, told AFP.

Then the researchers removed the effect of Earth's magnetic field in the enclosure.

"To our surprise," the moths were still able to find the right direction, Dreyer said.

When they rotated the sky 180 degrees, the moths changed their flight to follow along.

And when the researchers projected weird, incorrect maps of the night sky, the moths became erratic and lost.

This reinforced that the insects can not only navigate by the sky, but can follow along during the night when the relative positions of the stars shift along with Earth's rotation.

- Mysteries abound -

No one knows exactly how the Bogong moth manages this feat.

One theory is that they sometimes "cross-check" their direction with their magnetic compass, Dreyer said.

Another question is exactly which stars the moths are using to navigate.

In the lab, the researchers monitored 30 neurons involved in the moth's vision, coordination and navigation.

Developing the system of non-magnetic electrodes "cost me a fortune but it was worth the investment," Warrant said.

The neurons became particularly active at the sight of the long, bright stripe of the Milky Way, as well as the Carina Nebula.

The Milky Way is brighter in the Southern Hemisphere than in the north, Warrant pointed out.

"The intensity of that stripe grows as you go from the northern part of the sky to the southern part," which could offer a clue as to how the moths use it to navigate south, Warrant said.

Another mystery is how the moths know when to head south when summer arrives.

Warrant, who is supervising further research on this subject, said one option is that this knowledge was simply "something that the parents hand to their children".

The researchers believe that near the end of the moth's long migration, they start noticing clues they are getting close to their mountain refuge.

Warrant said he has identified a specific "odour compound" which emanates from the caves.

This smell "seems to act as a navigational beacon right at the very end of the journey," he added.

After the moths have seen out the sweltering summer, they return to their coastal birthplace to reproduce before dying.

E.Leuenberger--NZN