Zürcher Nachrichten - 'Solids full of holes': Nobel-winning materials explained

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • JRI

    0.1400

    13.08

    +1.07%

  • RELX

    -0.3700

    35.8

    -1.03%

  • BCC

    0.5100

    80.81

    +0.63%

  • RIO

    -4.1000

    91.03

    -4.5%

  • BCE

    0.3700

    25.86

    +1.43%

  • AZN

    0.1800

    92.77

    +0.19%

  • CMSC

    0.0500

    23.76

    +0.21%

  • BTI

    0.4600

    60.68

    +0.76%

  • VOD

    -0.0600

    14.65

    -0.41%

  • NGG

    0.2000

    85.27

    +0.23%

  • RYCEF

    -0.4300

    16

    -2.69%

  • BP

    -0.1600

    37.88

    -0.42%

  • GSK

    0.9400

    51.6

    +1.82%

'Solids full of holes': Nobel-winning materials explained
'Solids full of holes': Nobel-winning materials explained / Photo: Jonathan Nackstrand - AFP

'Solids full of holes': Nobel-winning materials explained

The chemistry Nobel was awarded on Wednesday to three scientists who discovered a revolutionary way of making materials full of tiny holes that can do everything from sucking water out of the desert air to capturing climate-warming carbon dioxide.

Text size:

The particularly roomy molecular architecture, called metal-organic frameworks, has also allowed scientists to filter "forever chemicals" from water, smuggle drugs into bodies -- and even slow the ripening of fruit.

After Japan's Susumu Kitagawa, UK-born Richard Robson and American-Jordanian Omar Yaghi won their long-anticipated Nobel Prize, here is what you need to know about their discoveries.

- What are metal-organic frameworks? -

Imagine you turn on the hot water for your morning shower, David Fairen-Jimenez, a professor who studies metal-organic frameworks (MOFs) at the University of Cambridge, told AFP.

The mirror in your bathroom fogs up as water molecules collect on its flat surface -- but it can only absorb so much.

Now imagine this mirror was made of a material that was extremely porous -- full of tiny holes -- and these holes were "the size of a water molecule," Fairen-Jimenez said.

This material would be able to hold far more water -- or other gases -- than seems possible.

At the Nobel ceremony, this secret storage ability was compared to Hermione's magical handbag in Harry Potter.

The inside space of a couple of grams of a particular MOF "holds an area as big as a football pitch," the Nobels said in a statement.

Ross Forgan, a professor of materials chemistry at the University of Glasgow, told AFP to think of MOFs as "solids that are full of holes".

They could look essentially like table salt, but "they have a ridiculously high storage capacity inside them because they are hollow -- they can soak up other molecules like a sponge."

- What did the Nobel-winners do? -

In the 1980s, Robson taught his students at Australia's University of Melbourne about molecular structures using wooden balls that played the role of atoms, connected by rods representing chemical bonds.

One day this inspired him to try to link different kinds of molecules together. By 1989, he had drawn out a crystal structure similar to a diamond's -- except that it was full of massive holes.

French researcher David Farrusseng compared the structure of MOFs to the Eiffel Tower. "By interlocking all the iron beams -- horizontal, vertical, and diagonal -- we see cavities appear," he told AFP.

However Robson's holey structures were unstable, and it took years before anyone could figure out what to do with them.

In 1997, Kitagawa finally managed to show that a MOF could absorb and release methane and other gases.

It was Yaghi who coined the term metal-organic frameworks and demonstrated to the world just how much room there was in materials made from them.

- What can they do? -

Because these frameworks can be assembled in different ways -- somewhat like playing with Lego -- companies and labs around the world have been testing out their capabilities.

"This is a field that's generating incredible enthusiasm and is moving extremely fast," Thierry Loiseau of French research centre CNRS told AFP.

More than 100,000 different kinds have already been reported in scientific literature, according to a Cambridge University database.

"Every single month, there are 500 new MOFs," Fairen-Jimenez said.

He and Forgan agreed that likely the greatest impact MOFs will have on the world are in the areas of capturing carbon and delivering drugs.

Though much hyped, efforts to capture carbon dioxide -- the driver of human-caused global warming -- have so far failed to live up to their promise.

Forgan said he was once "a bit sceptical about carbon capture, but now we're finally refining (the MOFs) to the point where they are meeting all the industrial requirements".

Canadian chemical producer BASF says it is the first company to produce hundreds of tons of MOFs a year, for carbon capture efforts.

And Yaghi himself has demonstrated that a MOF material was able to harvest water vapour from the night air in the desert US state of Arizona.

Once the rising Sun heated up the material, his team collected the drinkable water.

F.E.Ackermann--NZN