Zürcher Nachrichten - 'Wetware': Scientists use human mini-brains to power computers

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • JRI

    0.1400

    13.08

    +1.07%

  • RELX

    -0.3700

    35.8

    -1.03%

  • BCC

    0.5100

    80.81

    +0.63%

  • RIO

    -4.1000

    91.03

    -4.5%

  • BCE

    0.3700

    25.86

    +1.43%

  • AZN

    0.1800

    92.77

    +0.19%

  • CMSC

    0.0500

    23.76

    +0.21%

  • BTI

    0.4600

    60.68

    +0.76%

  • VOD

    -0.0600

    14.65

    -0.41%

  • NGG

    0.2000

    85.27

    +0.23%

  • RYCEF

    -0.4300

    16

    -2.69%

  • BP

    -0.1600

    37.88

    -0.42%

  • GSK

    0.9400

    51.6

    +1.82%

'Wetware': Scientists use human mini-brains to power computers
'Wetware': Scientists use human mini-brains to power computers / Photo: Fabrice COFFRINI - AFP

'Wetware': Scientists use human mini-brains to power computers

Inside a lab in the picturesque Swiss town of Vevey, a scientist gives tiny clumps of human brain cells the nutrient-rich fluid they need to stay alive.

Text size:

It is vital these mini-brains remain healthy, because they are serving as rudimentary computer processors -- and unlike your laptop, once they die, they cannot be rebooted.

This new field of research, called biocomputing or "wetware", aims to harness the evolutionarily honed yet still mysterious computing power of the human brain.

During a tour of Swiss start-up FinalSpark's lab, co-founder Fred Jordan told AFP he believes that processors using brain cells will one day replace the chips powering the artificial intelligence boom.

The supercomputers behind AI tools like ChatGPT currently use silicon semiconductors to simulate the neurons and networks of the human brain.

"Instead of trying to mimic, let's use the real thing," Jordan said.

Among other potential advantages, biocomputing could help address the skyrocketing energy demands of AI, which have already threatened climate emissions targets and led some tech giants to resort to nuclear power.

"Biological neurons are one million times more energy efficient than artificial neurons," Jordan said. They can also be endlessly reproduced in the lab, unlike the massively in-demand AI chips made by companies like behemoth Nvidia.

But for now, wetware's computing power is a very long way from competing with the hardware that runs the world.

And another question lingers: could these tiny brains become conscious?

- Brain power -

To make its "bioprocessors," FinalSpark first purchases stem cells. These cells, which were originally human skin cells from anonymous human donors, can become any cell in the body.

FinalSpark's scientists then turn them into neurons, which are collected into millimetre-wide clumps called brain organoids.

They are around the size of the brain of a fruit fly larvae, Jordan said.

Electrodes are attached to the organoids in the lab, which allow the scientists to "spy on their internal discussion," he explained.

The scientists can also stimulate the organoids with a small electric current. Whether they respond with a spike in activity -- or not -- is roughly the equivalent of the ones or zeroes in traditional computing.

Ten universities around the world are conducting experiments using FinalSpark's organoids -- the small company's website even has a live feed of the neurons at work.

Benjamin Ward-Cherrier, a researcher at the University of Bristol, used one of the organoids as the brain of a simple robot that managed to distinguish between different braille letters.

There are many challenges, including encoding the data in a way the organoid might understand -- then trying to interpret what the brain cells "spit out," he told AFP.

"Working with robots is very easy by comparison," Ward-Cherrier said with a laugh.

"There's also the fact that they are living cells -- and that means that they do die," he added.

Indeed, Ward-Cherrier was halfway through an experiment when the organoid died and his team had to start over. FinalSpark says the organoids live for up to six months.

At Johns Hopkins University in the United States, researcher Lena Smirnova is using similar organoids to study brain conditions such as autism and Alzheimer's disease in the hopes of finding new treatments.

Biocomputing is currently more "pie in the sky," unlike the "low-hanging fruit" use of the technology for biomedical research -- but that could change dramatically over the next 20 years, she told AFP.

- Do organoids dream of electric sheep? -

All the scientists AFP spoke to dismissed the idea that these tiny balls of cells in petri dishes were at risk of developing anything resembling consciousness.

Jordan acknowledged that "this is at the edge of philosophy," which is why FinalSpark collaborates with ethicists.

He also pointed out that the organoids -- which lack pain receptors -- have around 10,000 neurons, compared to a human brain's 100 billion.

However much about our brains, including how they create consciousness, remains a mystery.

That is why Ward-Cherrier hopes that -- beyond computer processing -- biocomputing will ultimately reveal more about how our brains work.

Back in the lab, Jordan opens the door of what looks like a big fridge containing 16 brain organoids in a tangle of tubes.

Lines suddenly start spiking on the screen next to the incubator, indicating significant neural activity.

The brain cells have no known way of sensing that their door has been opened, and the scientists have spent years trying to figure why this happens.

"We still don't understand how they detect the opening of the door," Jordan admitted.

L.Rossi--NZN