Zürcher Nachrichten - The Nobel winners who helped prove quantum 'spooky action'

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • RELX

    -0.3700

    35.8

    -1.03%

  • CMSC

    0.0500

    23.76

    +0.21%

  • BCC

    0.5100

    80.81

    +0.63%

  • RIO

    -4.1000

    91.03

    -4.5%

  • RYCEF

    -0.4300

    16

    -2.69%

  • BCE

    0.3700

    25.86

    +1.43%

  • VOD

    -0.0600

    14.65

    -0.41%

  • NGG

    0.2000

    85.27

    +0.23%

  • GSK

    0.9400

    51.6

    +1.82%

  • AZN

    0.1800

    92.77

    +0.19%

  • JRI

    0.1400

    13.08

    +1.07%

  • BP

    -0.1600

    37.88

    -0.42%

  • BTI

    0.4600

    60.68

    +0.76%

The Nobel winners who helped prove quantum 'spooky action'
The Nobel winners who helped prove quantum 'spooky action' / Photo: Jonathan NACKSTRAND - AFP

The Nobel winners who helped prove quantum 'spooky action'

Physicists Alain Aspect, John Clauser and Anton Zeilinger developed experimental tools that helped prove quantum entanglement -- a phenomenon Albert Einstein famously dismissed as "spooky action at a distance" -- is real, paving the way for its use in powerful computers.

Text size:

Here are mini biographies of the three scientists.

- John Clauser -

Born in 1942, John Francis Clauser's earliest memories were of gaping in wonder at the equipment in the lab of his father, who created the aeronautics department for Johns Hopkins, he told the American Institute of Physics in a 2002 oral history.

An electronics buff who built some of the first computer-driven video games at high school, Clauser opted for physics at college.

In the mid-1960s, he grew interested in the ideas of quantum mechanics pioneer John Bell, who strove to better understand entanglement -- when two particles behave as one and can affect each other, even at vast distances.

"I thought this is one of the most amazing papers I've ever read in my own life, and I kept wondering, gee, where's the experimental evidence?" Clauser told PBS in 2018.

Clauser believed he could test Bell's ideas in a laboratory, but was met with widespread scorn by leading physicists of the time.

He proposed the test independently of his thesis work on radio astronomy, and carried it out with collaborators in 1972 while at UC Berkeley.

By shining lasers at calcium atoms to emit entangled photons and measuring their properties, he was able to prove with hard data that what had defied the imagination even of the great Einstein -- was true.

- Alain Aspect -

Like Clauser, Frenchman Alain Aspect was seduced by the "limpid clarity" of Bell's theorem.

"Quantum strangeness has dominated my whole life as a physicist," he told AFP in a 2010 interview.

As a doctoral student, Aspect built on the work of Clauser, refining the experiment to eliminate possible loopholes in its design -- publishing his work in 1982.

The son of a teacher, Aspect was born in 1947 in a village in Gascony, and is currently a professor at Institut d'Optique Graduate School (Augustin Fresnel chair), in University Paris-Saclay, and at Ecole Polytechnique.

But his interest in the quantum realm stemmed from a period in his life spent away from academia -- he had gone to Cameroon to complete three years of voluntary service as a teacher.

During his free time, he came across a book written by Claude Cohen-Tannoudji on the subject (Cohen-Tannoudji won the Nobel in 1997), which in turn led him to Bell.

In a phone interview with the Nobel Foundation on Tuesday, Aspect emphasized the international makeup of his co-winners -- an American and an Austrian -- was an important signal in the face of rising nationalism around the world.

"It's important that scientists keep their international community at a time when... nationalism is taking over in many countries," he said.

- Anton Zeilinger -

Nicknamed the "quantum pope", the physicist Anton Zeilinger, born in 1945 in Ried im Innkreis in Austria, became one of the most famous scientists in his country by succeeding for the first time in 1997 in quantum teleportation of light particles.

A success quickly compared to the "teleportation" of the television series "Star Trek."

Using the properties of quantum entanglement for cryptography, Professor Zeilinger encrypted the first banking transaction by this means in Vienna in 2004.

In 2007, his team created entangled pairs of photons and fired one of each pair over 144 kilometers (89 miles) between the Canary Islands La Palma and Tenerife, to generate a quantum cryptographic key.

His fame comes in part from his tireless didactic talents: always keen to popularize his knowledge to the general public, he even initiated the Dalai Lama in 2012 with infectious enthusiasm.

Attached to the University of Vienna, Zeilinger corresponds in all respects to the image of the scientist: gray hair, a full beard, and small round glasses.

He had already received countless awards and did not really believe that he would one day win the Nobel. "There are so many other candidates," he said a few years ago to the Austria Press Agency

R.Schmid--NZN