Zürcher Nachrichten - Webb observations point to a shorter cosmic dark age

EUR -
AED 4.35335
AFN 77.050797
ALL 96.66512
AMD 452.977132
ANG 2.121943
AOA 1087.00321
ARS 1715.259993
AUD 1.706088
AWG 2.136666
AZN 2.019869
BAM 1.955701
BBD 2.406579
BDT 146.012629
BGN 1.990709
BHD 0.449077
BIF 3539.921292
BMD 1.18539
BND 1.513224
BOB 8.256583
BRL 6.231008
BSD 1.19484
BTN 109.724461
BWP 15.634211
BYN 3.403228
BYR 23233.647084
BZD 2.403079
CAD 1.614917
CDF 2684.909135
CHF 0.911322
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4350.080393
CRC 591.67013
CUC 1.18539
CUP 31.412839
CVE 110.259434
CZK 24.334287
DJF 212.769259
DKK 7.470097
DOP 75.226202
DZD 154.463202
EGP 55.903178
ERN 17.780852
ETB 185.61503
FJD 2.613371
FKP 0.865849
GBP 0.861444
GEL 3.194674
GGP 0.865849
GHS 13.089339
GIP 0.865849
GMD 86.533903
GNF 10484.470707
GTQ 9.164537
GYD 249.97738
HKD 9.259024
HNL 31.537408
HRK 7.536597
HTG 156.372106
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.865849
INR 108.693763
IQD 1565.320977
IRR 49934.560565
ISK 144.985527
JEP 0.865849
JMD 187.240547
JOD 0.840489
JPY 183.456955
KES 154.262212
KGS 103.662825
KHR 4804.757439
KMF 491.93733
KPW 1066.851144
KRW 1719.768532
KWD 0.36382
KYD 0.99575
KZT 600.939662
LAK 25713.701882
LBP 106998.998316
LKR 369.511346
LRD 215.369127
LSL 18.971842
LTL 3.500149
LVL 0.717031
LYD 7.497621
MAD 10.838453
MDL 20.096985
MGA 5339.730432
MKD 61.636888
MMK 2489.708718
MNT 4227.553379
MOP 9.608515
MRU 47.674593
MUR 53.852723
MVR 18.32658
MWK 2071.895403
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.971842
NGN 1643.520192
NIO 43.96778
NOK 11.437875
NPR 175.559137
NZD 1.964681
OMR 0.458017
PAB 1.19484
PEN 3.994898
PGK 5.114742
PHP 69.837307
PKR 334.289724
PLN 4.215189
PYG 8003.59595
QAR 4.35638
RON 5.097064
RSD 117.394074
RUB 90.535429
RWF 1743.311992
SAR 4.447217
SBD 9.544303
SCR 17.203132
SDG 713.016537
SEK 10.580086
SGD 1.506161
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 682.865527
SRD 45.104693
STD 24535.182964
STN 24.498763
SVC 10.454472
SYP 13109.911225
SZL 18.966043
THB 37.225573
TJS 11.153937
TMT 4.148866
TND 3.433027
TOP 2.854135
TRY 51.401485
TTD 8.11259
TWD 37.456003
TZS 3076.744675
UAH 51.211415
UGX 4271.784345
USD 1.18539
UYU 46.367659
UZS 14607.262574
VES 410.075543
VND 30749.020682
VUV 140.814221
WST 3.213333
XAF 655.923887
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153391
XDR 0.815759
XOF 655.923887
XPF 119.331742
YER 282.508153
ZAR 19.134414
ZMK 10669.938133
ZMW 23.448816
ZWL 381.695147
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    1.3800

    83.78

    +1.65%

  • BCC

    0.5100

    80.81

    +0.63%

  • JRI

    0.1400

    13.08

    +1.07%

  • RIO

    -4.1000

    91.03

    -4.5%

  • RYCEF

    -0.4300

    16

    -2.69%

  • RELX

    -0.3700

    35.8

    -1.03%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • NGG

    0.2000

    85.27

    +0.23%

  • CMSC

    0.0500

    23.76

    +0.21%

  • AZN

    0.1800

    92.77

    +0.19%

  • VOD

    -0.0600

    14.65

    -0.41%

  • BCE

    0.3700

    25.86

    +1.43%

  • GSK

    0.9400

    51.6

    +1.82%

  • BP

    -0.1600

    37.88

    -0.42%

  • BTI

    0.4600

    60.68

    +0.76%

Webb observations point to a shorter cosmic dark age
Webb observations point to a shorter cosmic dark age / Photo: Handout - ESA, NASA, CSA, STScI/AFP

Webb observations point to a shorter cosmic dark age

The first galaxies may have formed far earlier than previously thought, according to observations from the James Webb Space Telescope that are reshaping astronomers' understanding of the early universe.

Text size:

Researchers using the powerful observatory have now published papers in the journal Astrophysical Journal Letters, documenting two exceptionally bright, exceptionally distant galaxies, based on data gathered within the first few days of Webb going operational in July.

Their extreme luminosity points to two intriguing possibilities, astronomers on a NASA press call said Thursday.

The first is that these galaxies are very massive, with lots of low-mass stars like galaxies today, and had to start forming 100 million years after the Big Bang which occurred 13.8 billion years ago.

That is 100 million years earlier than the currently held end of the so-called cosmic dark age, when the universe contained only gas and dark matter.

A second possibility is that they are made up of "Population III" stars, which have never been observed but are theorized to have been made of only helium and hydrogen, before heavier elements existed.

Because these stars burned so brightly at extreme temperatures, galaxies made of them would not need to be as massive to account for the brightness seen by Webb, and could have started forming later.

"We are seeing such bright, such luminous galaxies at this early time, that we're really uncertain about what is happening here," Garth Illingworth of the University of California at Santa Cruz told reporters.

The galaxies' rapid discovery also defied expectations that Webb would need to survey a much larger volume of space to find such galaxies.

"It's sort of a bit of a surprise that there are so many that formed so early," added astrophysicist Jeyhan Kartaltepe of the Rochester Institute of Technology.

- Most distant starlight -

The two galaxies were found to have definitely existed approximately 450 and 350 million years after the Big Bang.

The second of these, called GLASS-z12, now represents the most distant starlight ever seen.

The more distant objects are from us, the longer it takes for their light to reach us, and so to gaze at the distant universe is to see into the deep past.

As these galaxies are so distant from Earth, by the time their light reaches us, it has been stretched by the expansion of the universe and shifted to the infrared region of the light spectrum.

Webb can detect infrared light at a far higher resolution than any instrument before it.

Illingworth, who co-authored the paper on GLASS-z12, told AFP disentangling the two competing hypotheses would be a "real challenge," though the Population III idea was more appealing to him, as it would not require upending existing cosmological models.

Teams are hoping to soon use Webb's powerful spectrograph instruments -- which analyze the light from objects to reveal their detailed properties -- to confirm the galaxies' distance, and better understand their composition.

The Atacama Large Millimeter/submillimeter Array (ALMA), a ground telescope in northern Chile, might also be able to help in weighing the mass of the two galaxies, which would help decide between the two hypotheses.

"JWST has opened up a new frontier, bringing us closer to understanding how it all began," summed up Tommaso Treu of the University of California at Los Angeles, principal investigator on one of the Webb programs.

W.O.Ludwig--NZN