Zürcher Nachrichten - What are proteins again? Nobel-winning chemistry explained

EUR -
AED 4.35335
AFN 77.050797
ALL 96.66512
AMD 452.977132
ANG 2.121943
AOA 1087.00321
ARS 1715.259993
AUD 1.706088
AWG 2.136666
AZN 2.019869
BAM 1.955701
BBD 2.406579
BDT 146.012629
BGN 1.990709
BHD 0.449077
BIF 3539.921292
BMD 1.18539
BND 1.513224
BOB 8.256583
BRL 6.231008
BSD 1.19484
BTN 109.724461
BWP 15.634211
BYN 3.403228
BYR 23233.647084
BZD 2.403079
CAD 1.614917
CDF 2684.909135
CHF 0.911322
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4350.080393
CRC 591.67013
CUC 1.18539
CUP 31.412839
CVE 110.259434
CZK 24.334287
DJF 212.769259
DKK 7.470097
DOP 75.226202
DZD 154.463202
EGP 55.903178
ERN 17.780852
ETB 185.61503
FJD 2.613371
FKP 0.865849
GBP 0.861444
GEL 3.194674
GGP 0.865849
GHS 13.089339
GIP 0.865849
GMD 86.533903
GNF 10484.470707
GTQ 9.164537
GYD 249.97738
HKD 9.259024
HNL 31.537408
HRK 7.536597
HTG 156.372106
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.865849
INR 108.693763
IQD 1565.320977
IRR 49934.560565
ISK 144.985527
JEP 0.865849
JMD 187.240547
JOD 0.840489
JPY 183.456955
KES 154.262212
KGS 103.662825
KHR 4804.757439
KMF 491.93733
KPW 1066.851144
KRW 1719.768532
KWD 0.36382
KYD 0.99575
KZT 600.939662
LAK 25713.701882
LBP 106998.998316
LKR 369.511346
LRD 215.369127
LSL 18.971842
LTL 3.500149
LVL 0.717031
LYD 7.497621
MAD 10.838453
MDL 20.096985
MGA 5339.730432
MKD 61.636888
MMK 2489.708718
MNT 4227.553379
MOP 9.608515
MRU 47.674593
MUR 53.852723
MVR 18.32658
MWK 2071.895403
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.971842
NGN 1643.520192
NIO 43.96778
NOK 11.437875
NPR 175.559137
NZD 1.964681
OMR 0.458017
PAB 1.19484
PEN 3.994898
PGK 5.114742
PHP 69.837307
PKR 334.289724
PLN 4.215189
PYG 8003.59595
QAR 4.35638
RON 5.097064
RSD 117.394074
RUB 90.535429
RWF 1743.311992
SAR 4.447217
SBD 9.544303
SCR 17.203132
SDG 713.016537
SEK 10.580086
SGD 1.506161
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 682.865527
SRD 45.104693
STD 24535.182964
STN 24.498763
SVC 10.454472
SYP 13109.911225
SZL 18.966043
THB 37.225573
TJS 11.153937
TMT 4.148866
TND 3.433027
TOP 2.854135
TRY 51.401485
TTD 8.11259
TWD 37.456003
TZS 3076.744675
UAH 51.211415
UGX 4271.784345
USD 1.18539
UYU 46.367659
UZS 14607.262574
VES 410.075543
VND 30749.020682
VUV 140.814221
WST 3.213333
XAF 655.923887
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153391
XDR 0.815759
XOF 655.923887
XPF 119.331742
YER 282.508153
ZAR 19.134414
ZMK 10669.938133
ZMW 23.448816
ZWL 381.695147
  • RBGPF

    1.3800

    83.78

    +1.65%

  • SCS

    0.0200

    16.14

    +0.12%

  • RELX

    -0.3700

    35.8

    -1.03%

  • CMSC

    0.0500

    23.76

    +0.21%

  • RYCEF

    -0.4300

    16

    -2.69%

  • AZN

    0.1800

    92.77

    +0.19%

  • RIO

    -4.1000

    91.03

    -4.5%

  • BP

    -0.1600

    37.88

    -0.42%

  • GSK

    0.9400

    51.6

    +1.82%

  • NGG

    0.2000

    85.27

    +0.23%

  • BTI

    0.4600

    60.68

    +0.76%

  • BCC

    0.5100

    80.81

    +0.63%

  • CMSD

    -0.0400

    24.05

    -0.17%

  • VOD

    -0.0600

    14.65

    -0.41%

  • BCE

    0.3700

    25.86

    +1.43%

  • JRI

    0.1400

    13.08

    +1.07%

What are proteins again? Nobel-winning chemistry explained
What are proteins again? Nobel-winning chemistry explained / Photo: Jonathan NACKSTRAND - AFP/File

What are proteins again? Nobel-winning chemistry explained

The Nobel Prize in Chemistry was awarded on Wednesday to three scientists who have help unravel some of the enduring secrets of proteins, the building blocks of life.

Text size:

While Demis Hassabis and John Jumper of Google's DeepMind lab used artificial intelligence techniques to predict the structure of proteins, biochemist David Baker managed to design totally new ones never seen in nature.

These breakthroughs are hoped to lead towards numerous advances, from discovering new drugs to enzymes that decompose pollutants.

Here is an explainer about the science behind the Nobel win.

- What are proteins? -

Proteins are molecules that serve as "the factories of everything that happens in our body," Davide Calebiro, a protein researcher at the UK's University of Birmingham, told AFP.

DNA provides the blueprint for every cell. Proteins then use this information to do the work of turning that cell into something specific -- such as a brain cell or a muscle cell.

Proteins are made up of 20 different kinds of amino acid. The sequence that these acids start out in determines what 3D structure they will twist and fold into.

American Chemical Society president Mary Carroll compared how this works to an old-fashioned telephone cord.

"So you could stretch out that telephone cord, and then you would just have a one-dimensional structure," she told AFP.

"Then it would spring back" into the 3D shape, she added.

So if chemists wanted to master proteins, they needed to understand how the 2D sequences turned into these 3D structures.

"Nature already provides tens of thousands of different proteins, but sometimes we want them to do something they do not yet know how to do," said French biochemist Sophie Sacquin-Mora.

- What did AI do? -

The work of previous Nobel winners had demonstrated that chemists should be able to look at amino acid sequences and predict the structure they would become.

But it was not so easy. Chemists struggled for 50 years -- there was even a biannual competition called the "Protein Olympics" where many failed the prediction test.

Enter Hassabis and Jumper. They trained their artificial intelligence model AlphaFold on all the known amino acid sequences and corresponding structures.

When given an unknown sequence, AlphaFold compares it with previous ones, gradually reconstructing the puzzle in three dimensions.

After the newer generation AlphaFold2 crushed the 2020 Protein Olympics, the organisers deemed the problem solved.

The model has now predicted the structure of almost all of the 200 million proteins known on Earth.

- What about the new proteins? -

US biochemist Baker started at the opposite end of the process.

First, he designed an entirely new protein structure never seen in nature.

Then, using a computer programme called Rosetta that he had developed, he was able to work out the amino acid sequence that it started out as.

To achieve this, Rosetta trawled through all the known protein structures, searching for short protein fragments similar to the structure it wanted to build.

Rosetta then tweaked them and proposed a sequence that could end up as the structure.

- What is all this for? -

Mastering such fundamental and important little machines as proteins could have a vast number of potential uses in the future.

"It allows us to better understand how life functions, including why some diseases develop, how antibiotic resistance occurs or why some microbes can decompose plastic," the Nobel website said.

Making all-new proteins could lead to new nanomaterials, targeted drugs and vaccines, or more climate-friendly chemicals, it added.

Asked to pick a favourite protein, Baker pointed to one he "designed during the pandemic that protects against the coronavirus".

 

Calebiro emphasised how "transformative" this research would be.

"I think this is just the beginning of a completely new era."

F.Schneider--NZN