Zürcher Nachrichten - What are regulatory T-cells? Nobel-winning science explained

EUR -
AED 4.278489
AFN 76.301366
ALL 96.530556
AMD 444.389335
ANG 2.085119
AOA 1068.154458
ARS 1670.316609
AUD 1.75427
AWG 2.096704
AZN 1.984845
BAM 1.955415
BBD 2.345238
BDT 142.439297
BGN 1.957372
BHD 0.439074
BIF 3456.06653
BMD 1.164835
BND 1.508396
BOB 8.046379
BRL 6.313529
BSD 1.16437
BTN 104.690912
BWP 15.469884
BYN 3.34764
BYR 22830.773166
BZD 2.341828
CAD 1.611422
CDF 2599.912958
CHF 0.937162
CLF 0.02734
CLP 1072.545921
CNY 8.235507
CNH 8.234944
COP 4446.759008
CRC 568.78787
CUC 1.164835
CUP 30.868137
CVE 110.780379
CZK 24.198994
DJF 207.014999
DKK 7.469472
DOP 74.84113
DZD 151.385181
EGP 55.40272
ERN 17.47253
ETB 180.60972
FJD 2.630723
FKP 0.8723
GBP 0.873382
GEL 3.149553
GGP 0.8723
GHS 13.337819
GIP 0.8723
GMD 85.033396
GNF 10119.511721
GTQ 8.919242
GYD 243.610929
HKD 9.068302
HNL 30.667954
HRK 7.538703
HTG 152.42995
HUF 382.163892
IDR 19442.733022
ILS 3.76907
IMP 0.8723
INR 104.795933
IQD 1525.399284
IRR 49054.133779
ISK 149.006189
JEP 0.8723
JMD 186.373259
JOD 0.825914
JPY 180.836077
KES 150.617641
KGS 101.8653
KHR 4665.166047
KMF 491.560932
KPW 1048.343898
KRW 1715.709753
KWD 0.357232
KYD 0.970405
KZT 588.861385
LAK 25249.913875
LBP 104272.296288
LKR 359.159196
LRD 204.939598
LSL 19.73441
LTL 3.439456
LVL 0.704598
LYD 6.329752
MAD 10.752872
MDL 19.812009
MGA 5193.953775
MKD 61.627851
MMK 2446.083892
MNT 4131.091086
MOP 9.337359
MRU 46.433846
MUR 53.664406
MVR 17.950554
MWK 2019.093291
MXN 21.176696
MYR 4.788683
MZN 74.437324
NAD 19.73441
NGN 1689.139851
NIO 42.851552
NOK 11.767103
NPR 167.505978
NZD 2.016522
OMR 0.447885
PAB 1.164465
PEN 3.914028
PGK 4.940241
PHP 68.699705
PKR 326.441746
PLN 4.232667
PYG 8008.421228
QAR 4.244263
RON 5.093014
RSD 117.420109
RUB 89.113003
RWF 1694.158743
SAR 4.371861
SBD 9.5794
SCR 15.722146
SDG 700.652754
SEK 10.953705
SGD 1.509027
SHP 0.873928
SLE 26.791608
SLL 24426.013032
SOS 664.266196
SRD 44.99647
STD 24109.740275
STN 24.495171
SVC 10.187374
SYP 12881.033885
SZL 19.719113
THB 37.125677
TJS 10.683448
TMT 4.076924
TND 3.415727
TOP 2.804644
TRY 49.510866
TTD 7.893444
TWD 36.432793
TZS 2836.374505
UAH 48.875802
UGX 4119.187948
USD 1.164835
UYU 45.541022
UZS 13930.253805
VES 289.561652
VND 30705.060237
VUV 142.19158
WST 3.250066
XAF 655.824896
XAG 0.019865
XAU 0.000276
XCD 3.148026
XCG 2.098577
XDR 0.815408
XOF 655.723589
XPF 119.331742
YER 277.700931
ZAR 19.720255
ZMK 10484.920268
ZMW 26.920577
ZWL 375.076512
  • CMSC

    -0.0800

    23.4

    -0.34%

  • BCC

    -1.1100

    73.15

    -1.52%

  • GSK

    -0.3270

    48.243

    -0.68%

  • BCE

    0.2500

    23.47

    +1.07%

  • RIO

    -0.3100

    73.42

    -0.42%

  • SCS

    -0.0850

    16.145

    -0.53%

  • NGG

    -0.3900

    75.52

    -0.52%

  • BP

    -0.9650

    36.265

    -2.66%

  • BTI

    -0.8250

    57.215

    -1.44%

  • RBGPF

    0.0000

    78.35

    0%

  • JRI

    0.0300

    13.78

    +0.22%

  • RYCEF

    -0.1400

    14.51

    -0.96%

  • RELX

    -0.1340

    40.406

    -0.33%

  • CMSD

    -0.0550

    23.265

    -0.24%

  • VOD

    -0.1630

    12.47

    -1.31%

  • AZN

    0.2900

    90.32

    +0.32%

What are regulatory T-cells? Nobel-winning science explained
What are regulatory T-cells? Nobel-winning science explained / Photo: Jonathan Nackstrand - AFP

What are regulatory T-cells? Nobel-winning science explained

The Nobel Prize in Medicine was awarded on Monday to three scientists for discovering how a particular kind of cell can stop the body's immune system from attacking itself.

Text size:

The discovery of these "regulatory T-cells" has raised hopes of finding new ways to fight autoimmune diseases and cancer, though treatments based on the work have yet to become widely available.

After Americans Mary Brunkow and Fred Ramsdell and Japan's Shimon Sakaguchi were announced new Nobel laureates at a ceremony in Stockholm, here is what you need to know about their work.

- What is the immune system? -

The immune system is your body's first line of defence against invaders such as microbes that could give you an infection.

Its most powerful weapons are white blood cells called T-cells. They seek out, identify and destroy these invading germs -- or other unwanted outsiders such as cancerous cells -- throughout the body.

But sometimes these T-cells identify the wrong target and attack healthy cells, which causes a range of autoimmune diseases such as type 1 diabetes and lupus.

Enter regulatory T-cells -- also called Tregs -- which the Nobel committee dubbed the body's "security guards".

"They put the brakes on the immune system to prevent it from attacking something that it shouldn't," Jonathan Fisher, head of the innate immune engineering laboratory at University College London, told AFP.

For a long time, it had been thought this crucial regulation role was performed entirely by the thymus, a small gland in the upper chest.

T-cells have things called "receptors" which make sure they can detect the shape of an invading microbe -- such as the famously spiky Covid-19 virus.

When T-cells grow in the thymus, the gland has a way to eliminate any that have receptors which match healthy cells, to avoid friendly fire in the future.

But what if some of these rogue T-cells slip through?

- What did the Nobel winners do? -

Some scientists had once thought there could be some other cell out there, patrolling for escapees.

But by the 1980s, most researchers had abandoned this idea -- except Sakaguchi.

His team took T-cells from one mouse and injected them into another which had no thymus. The mouse was suddenly protected against autoimmune diseases, showing that something other than the gland must be able to fight off self-attacking T-cells.

A decade later, Brunkow and Ramsdell were investigating why the males of a mutated strain of mice called "scurfy" only lived for a few weeks.

In 2021, they were able to prove that a mutation of the gene FOXP3 caused both scurfy and a rare autoimmune disease in humans called IPEX.

Scientists including Sakaguchi were then able to show that FOXP3 controls the development of regulatory T-cells.

- How does this help us? -

A new field of research has been probing exactly what this discovery means for human health.

French immunologist Divi Cornec told AFP that "a defect in regulatory T-cells" can make autoimmune diseases more severe.

These cells also play a "crucial role in preventing transplanted organs from being rejected," Cornec said.

Cancer can also "hijack" regulatory T-cells to help it escape the immune system, Fisher said.

When this happens, the cells crack down too hard on the immune system -- like an overzealous security guard -- and allow the tumour to grow.

- What about new drugs? -

There are now over 200 clinical trials testing treatments involving regulatory T-cells, according to the Nobel ceremony.

However the breakthroughs which won Monday's Nobel have not yet led to a drug that is currently in wide use.

On Monday, Sakaguchi said he hopes the Nobel spurs the field "in a direction where it can be applied in actual bedside and clinical settings".

Fisher emphasised that a lot of progress had been made over the last five years -- and that these things take a lot of time and money.

"There is a big gap between our scientific understanding of the immune system and our ability to investigate it and manipulate it in a lab -- and our ability to actually deliver a safe-in-humans drug product that will have a consistent and beneficial effect," Fisher said.

Ch.Siegenthaler--NZN