Zürcher Nachrichten - Angle mort de l'IA: quand les outils échouent à détecter leurs propres faux

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.859325
GBP 0.865754
GEL 3.194674
GGP 0.859325
GHS 12.974143
GIP 0.859325
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.859325
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.859325
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.949348
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.374007
MNT 4229.125697
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.78282
WST 3.21762
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
  • AEX

    4.6900

    1001.65

    +0.47%

  • BEL20

    11.8200

    5385.38

    +0.22%

  • PX1

    54.8900

    8126.53

    +0.68%

  • ISEQ

    182.8100

    13147.76

    +1.41%

  • OSEBX

    3.8600

    1760.38

    +0.22%

  • PSI20

    17.2900

    8662.19

    +0.2%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    -39.8700

    4028.03

    -0.98%

  • N150

    11.3700

    3930.64

    +0.29%

Angle mort de l'IA: quand les outils échouent à détecter leurs propres faux
Angle mort de l'IA: quand les outils échouent à détecter leurs propres faux / Photo: Chris Delmas - AFP

Angle mort de l'IA: quand les outils échouent à détecter leurs propres faux

Lorsque des Philippins indignés ont utilisé un assistant virtuel ("chatbot") dopé à l'IA pour vérifier la photo virale d'un parlementaire impliqué dans un scandale de corruption, l'outil n'a pas détecté qu'elle était fabriquée. Il l'avait pourtant lui-même générée.

Taille du texte:

Les internautes se tournent de plus en plus vers des chatbots pour vérifier des images en temps réel. Mais ces outils échouent souvent, interrogeant sur leurs capacités à détecter les images factices, à un moment où les grandes plateformes réduisent la vérification humaine.

Dans de nombreux cas, ils identifient comme authentiques des images générées par l'IA, ce qui accentue la confusion dans un univers numérique saturé de faux visuels.

Les outils de vérification "sont principalement entraînés sur des schémas linguistiques et manquent de la compréhension visuelle nécessaire pour identifier correctement les images générées ou manipulées", explique Alon Yamin, PDG de Copyleaks, une plateforme de détection de contenus IA.

"Les chatbots donnent souvent des évaluations incohérentes ou trop générales, ce qui les rend peu fiables pour des tâches comme la vérification ou l'authentification."

Aux Philippines, une image fabriquée a ainsi circulé sur les réseaux sociaux impliquant Elizaldy Co, ex-député impliqué dans une vaste affaire de corruption concernant des projets fictifs de contrôle des inondations, qui auraient coûté des centaines de millions de dollars au contribuable.

La photo montrait l'ex-député au Portugal, alors qu'il aurait dû se trouver aux Philippines à la disposition de la justice. Lorsque des internautes ont interrogé l'assistant IA de Google pour savoir si la photo était authentique, l'IA a répondu à tort par l'affirmative.

Elizaldy Co n'est en réalité jamais réapparu en public depuis le début de l'enquête.

Les vérificateurs de l'AFP ont retrouvé le créateur de l'image et établi qu'elle avait été précisément générée par l'IA de Google.

Google n'a pas répondu aux sollicitations de l'AFP sur ce sujet.

- "Distinguable de la réalité" -

L'AFP a trouvé d'autres occurrences d'IA incapables de reconnaître leurs propres créations.

Lors des violentes manifestations du mois dernier au Cachemire pakistanais, des internautes ont partagé une image censée montrer des hommes marchant avec des drapeaux et des torches.

Une analyse de l'AFP a révélé qu'elle avait été créée avec le modèle Gemini de Google. Mais Gemini et Copilot (Microsoft) l'ont identifiée comme authentique.

"Ces modèles (d'IA) sont programmés uniquement pour bien imiter", explique à l'AFP Rossine Fallorina, du centre de recherche Sigla. "En un sens, ils ne peuvent que générer des choses qui imitent correctement. Ils ne peuvent pas déterminer si cette imitation est réellement distinguable de la réalité".

Plus tôt cette année, le Tow Center for Digital Journalism de l'université américaine Columbia a testé sept chatbots IA – dont ChatGPT, Perplexity, Gemini et Grok (une IA appartenant à Elon Musk) – sur 10 photos de photojournalistes.

Tous ont échoué à identifier correctement la provenance des images qui leur étaient soumises, selon l'étude.

- "Choqué" -

L'AFP a retrouvé l'auteur de la fausse photo d'Elizaldy Co, qui a dépassé le million de vues sur les réseaux: un développeur web philippin qui affirme l'avoir créée "pour s'amuser" avec Nano Banana, le générateur d'images IA de Gemini.

"Malheureusement, beaucoup de gens y ont cru", confie-t-il, sous couvert d'anonymat pour éviter les représailles. "J'ai modifié mon post en précisant +image générée par IA+ pour stopper la propagation, car j'étais choqué par le nombre de partages."

Ces cas montrent à quel point les photos générées par IA peuvent être indiscernables des images réelles. Et la tendance inquiète, alors que les internautes délaissent les moteurs de recherche traditionnels au profit des outils IA pour s'informer et vérifier des contenus.

Le géant américain Meta, qui contrôle Facebook et Instagram, a annoncé en début d'année la fin de son programme de fact-checking aux Etats-Unis pour le remplacer par un système de "notes de communauté", écrites par des utilisateurs, sur le modèle du réseau social X d'Elon Musk.

L'AFP collabore en revanche toujours avec Meta dans 26 langues, en Asie, Amérique latine et dans l'Union européenne.

Les chercheurs estiment que les modèles d'IA peuvent aider les fact-checkers professionnels à géolocaliser rapidement des images et repérer des indices visuels. Mais ils avertissent qu'ils ne peuvent pas remplacer le travail humain.

"On ne peut pas compter sur les outils IA pour combattre l'IA à long terme", insiste Rossine Fallorina.

M.J.Baumann--NZN