Zürcher Nachrichten - Nobel de Física premia avanços em redes neurológicas artificiais e modelos linguísticos

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
Nobel de Física premia avanços em redes neurológicas artificiais e modelos linguísticos
Nobel de Física premia avanços em redes neurológicas artificiais e modelos linguísticos / foto: Valentin RAKOVSKY, Sabrina BLANCHARD - AFP

Nobel de Física premia avanços em redes neurológicas artificiais e modelos linguísticos

Reconhecimento facial, tradução automática e detecção de tumores são alguns dos avanços possibilitados pelas redes artificiais de aprendizagem, pelas quais John Hopfield e Geoffrey Hinton receberam o Prêmio Nobel de Física de 2024 nesta terça-feira (8).

Tamanho do texto:

Graças ao seu trabalho pioneiro, os computadores não se limitam a seguir uma série de instruções, mas sim a "aprender através de exemplos".

- A memória associativa de Hopfield -

O princípio da "aprendizagem automática" é inspirado no funcionamento do cérebro humano e, mais especificamente, nas redes neuronais.

Nos humanos, o aprendizado reforça as conexões entre determinados grupos de neurônios e enfraquece outras, desenhando uma espécie de mapa de conexões para uma determinada imagem. Em 1982, o físico John Hopfield transferiu esta operação para uma rede artificial que leva o seu nome.

Nesta rede, o sistema funciona "com um comportamento que busca naturalmente o mínimo de energia", explica à AFP Damien Querlioz, pesquisador francês especializado em sistemas de processamento de informação do Centro de Nanociências e Nanotecnologias.

Hopfield comparou o armazenamento de um padrão na memória da rede com o percurso mais eficiente de uma bola rolando por uma paisagem de picos e vales. Quando a rede processa um padrão próximo ao salvo, a bola segue um caminho de gasto de energia semelhante, levando-a ao mesmo ponto.

"Com técnicas da física estatística, ele demonstrou como um algoritmo simples poderia armazenar certos padrões na memória, que poderiam então ser recuperados", explica Francis Bach, diretor do laboratório de aprendizagem estatística SIERRA na Ecole Normale Supérieure em Paris.

- A aprendizagem profunda de Hinton -

Geoffrey Hinton construiu seu trabalho sobre as bases estabelecidas por Hopfield. "Ele mostrou que é possível aprender de forma eficaz com redes neuronais de múltiplas camadas", explica Bach. Em outras palavras: "Quanto mais camadas houver, mais complexo pode ser o comportamento, e quanto mais complexo o comportamento, mais fácil será aprender de forma eficaz".

Desde a década de 1980, Hinton não parou de "propor novos algoritmos de aprendizagem para comportamentos cada vez mais complexos", acrescenta.

No final daquela década, os pesquisadores começaram a trabalhar "no reconhecimento de caracteres, que é mais simples do que imagens naturais", diz Bach.

- Dados e poder de cálculo -

Posteriormente, a disciplina sofreu um certo declínio até a década de 2010. Para que suas descobertas funcionassem, era necessário maior poder de cálculo e, sobretudo, enormes quantidades de dados, ingredientes essenciais para as redes neuronais, explica Querlioz.

As máquinas só podem aprender bem se receberem suficientes "exemplos da inteligência que você deseja que elas reproduzam".

O comitê do Nobel recorda que, em seu artigo publicado em 1982, Hopfield utilizou uma rede muito simples com "menos de 500 parâmetros para monitorar", enquanto os gigantescos modelos de linguagem atuais contêm "um quadrilhão".

- Para que serve? -

A grande onda de aprendizagem profunda da década de 2010 "revolucionou tudo relacionado ao processamento de imagens e ao processamento de linguagem natural", observa Francis Bach.

Querlioz cita exemplos como "assistentes de voz, reconhecimento facial" ou programas de criação de imagens como o DALL-E.

Mas estes avanços vão muito além daquilo que o público em geral percebe. "O que permite que o software do telefone diferencie os rostos de seus filhos também permite reconhecer um tumor", diz Bach.

Também facilita a análise e classificação de enormes quantidades de dados recolhidos em institutos de pesquisa de física elementar ou o processamento de imagens e espectros capturados na observação de estrelas.

R.Bernasconi--NZN